Study

HBOT, Mitochondria & Oxidative Stress: What Does the Evidence Say?

Intermittent HBOT improves mitochondrial function and reduces oxidative stress: short-term ROS↑, long-term via Nrf2/SIRT1/HIF-1α antioxidant systems↑ and ROS↓.

Lesezeit:

10

min.

Key Message

This review highlights: Short-term HBOT exposure can increase mitochondrial stress and ROS; however, longer-term or intermittent protocols improve mitochondrial function and reduce ROS. This occurs via upregulation of antioxidant systems (SOD, catalase/GPx) and activation of Nrf2, SIRT1, and HIF-1α (the hyperoxic–hypoxic paradox). These mechanisms explain why HBOT may be therapeutically relevant in conditions with mitochondrial dysfunction. (PubMedDOI)

Content in Brief (plain language)

How HBOT Affects Mitochondria

  • Oxygen supply boost: HBOT increases dissolved oxygen in tissues (up to ~20-fold at ~2.5 ATA). Mitochondria are the main target organelles.

Dual Effect on ROS

  • Short-term: Possible increase in ROS/oxidative stress.

  • Long-term/intermittent: Enhanced antioxidant capacity, lower ROS levels, and improved mitochondrial performance.

Key Pathways & Defense Systems

  • Antioxidant enzymes: SOD → H₂O₂ breakdown via catalase/GPx; in the brain, additional Trx/Prx systems.

  • Transcriptional programs:

    • Nrf2: upregulates antioxidant genes.

    • SIRT1: promotes mitochondrial biogenesis.

    • HIF-1α: mimics hypoxia via intermittent hyperoxia.

Clinical Relevance (from the Review)

Many diseases involve mitochondrial dysfunction and ROS imbalance → HBOT provides a biologically plausible therapeutic pathway. (Review-level evidence, no new patient cohort).

Limitations of the Evidence

  • Narrative review (no new clinical data).

  • Heterogeneous primary study protocols (pressure, duration, cycles) → outcomes depend strongly on dose–time pattern.

FAQ Snippets (for your website)

Does oxidative stress increase under HBOT?

  • Short-term: Yes, temporarily.

  • Intermittent/longer-term: Adaptive responses dominate, with antioxidant upregulation → net ROS↓ and mitochondrial function↑.

Why is “intermittent” important?

  • Repeated hyperoxia triggers hormetic signaling (Nrf2/SIRT1/HIF-1α) – the core of the hyperoxic–hypoxic paradox.

Autoren

Nofar Schottlender; Irit Gottfried; Uri Ashery

Tags

HBOT, Mitochondrien, oxidativer Stress, ROS, Nrf2, SIRT1, HIF-1α, Antioxidantien, Hyperoxisch-Hypoxisches Paradox, Biomolecules 2021

Publikations Details

Studientyp:

Narrative Review (Overview article)

Publikation:

Biomolecules 2021; 11(12):1827 (Article Number)

Teilnehmer:

nicht zutreffend (Review)

Ort:

Tel Aviv University, School of Neurobiology, Biochemistry & Biophysics; Sagol School of Neuroscience, Israel

Seiten:

1827 (MDPI Article Number)

1827 (MDPI Article Number)

DOI:

10.3390/biom11121827

10.3390/biom11121827

PubMed ID:

34944468

34944468

Auf PubMed öffnen

Weitere Studien und Ressourcen finden Sie hier.

Weitere Studien und Ressourcen finden Sie hier.

Weiterlesen