Study
HBOT, Mitochondria & Oxidative Stress: What Does the Evidence Say?
Intermittent HBOT improves mitochondrial function and reduces oxidative stress: short-term ROS↑, long-term via Nrf2/SIRT1/HIF-1α antioxidant systems↑ and ROS↓.
Lesezeit:
10
min.
Key Message
This review highlights: Short-term HBOT exposure can increase mitochondrial stress and ROS; however, longer-term or intermittent protocols improve mitochondrial function and reduce ROS. This occurs via upregulation of antioxidant systems (SOD, catalase/GPx) and activation of Nrf2, SIRT1, and HIF-1α (the hyperoxic–hypoxic paradox). These mechanisms explain why HBOT may be therapeutically relevant in conditions with mitochondrial dysfunction. (PubMedDOI)
Content in Brief (plain language)
How HBOT Affects Mitochondria
Oxygen supply boost: HBOT increases dissolved oxygen in tissues (up to ~20-fold at ~2.5 ATA). Mitochondria are the main target organelles.
Dual Effect on ROS
Short-term: Possible increase in ROS/oxidative stress.
Long-term/intermittent: Enhanced antioxidant capacity, lower ROS levels, and improved mitochondrial performance.
Key Pathways & Defense Systems
Antioxidant enzymes: SOD → H₂O₂ breakdown via catalase/GPx; in the brain, additional Trx/Prx systems.
Transcriptional programs:
Nrf2: upregulates antioxidant genes.
SIRT1: promotes mitochondrial biogenesis.
HIF-1α: mimics hypoxia via intermittent hyperoxia.
Clinical Relevance (from the Review)
Many diseases involve mitochondrial dysfunction and ROS imbalance → HBOT provides a biologically plausible therapeutic pathway. (Review-level evidence, no new patient cohort).
Limitations of the Evidence
Narrative review (no new clinical data).
Heterogeneous primary study protocols (pressure, duration, cycles) → outcomes depend strongly on dose–time pattern.
FAQ Snippets (for your website)
Does oxidative stress increase under HBOT?
Short-term: Yes, temporarily.
Intermittent/longer-term: Adaptive responses dominate, with antioxidant upregulation → net ROS↓ and mitochondrial function↑.
Why is “intermittent” important?
Repeated hyperoxia triggers hormetic signaling (Nrf2/SIRT1/HIF-1α) – the core of the hyperoxic–hypoxic paradox.
Autoren
Nofar Schottlender; Irit Gottfried; Uri Ashery
Tags
HBOT, Mitochondrien, oxidativer Stress, ROS, Nrf2, SIRT1, HIF-1α, Antioxidantien, Hyperoxisch-Hypoxisches Paradox, Biomolecules 2021
Publikations Details
Studientyp:
Narrative Review (Overview article)
Publikation:
Biomolecules 2021; 11(12):1827 (Article Number)
Teilnehmer:
nicht zutreffend (Review)
Ort:
Tel Aviv University, School of Neurobiology, Biochemistry & Biophysics; Sagol School of Neuroscience, Israel
Seiten:
DOI:
PubMed ID:
Auf PubMed öffnen